Current File : //opt/puppetlabs/puppet/lib/ruby/vendor_ruby/puppet/pops/model/factory.rb |
# frozen_string_literal: true
# Factory is a helper class that makes construction of a Pops Model
# much more convenient. It can be viewed as a small internal DSL for model
# constructions.
# For usage see tests using the factory.
#
# @todo All those uppercase methods ... they look bad in one way, but stand out nicely in the grammar...
# decide if they should change into lower case names (some of the are lower case)...
#
module Puppet::Pops
module Model
class Factory
# Shared build_visitor, since there are many instances of Factory being used
KEY_LENGTH = 'length'
KEY_OFFSET = 'offset'
KEY_LOCATOR = 'locator'
KEY_OPERATOR = 'operator'
KEY_VALUE = 'value'
KEY_KEYS = 'keys'
KEY_NAME = 'name'
KEY_BODY = 'body'
KEY_EXPR = 'expr'
KEY_LEFT_EXPR = 'left_expr'
KEY_RIGHT_EXPR = 'right_expr'
KEY_PARAMETERS = 'parameters'
BUILD_VISITOR = Visitor.new(self, 'build')
INFER_VISITOR = Visitor.new(self, 'infer')
INTERPOLATION_VISITOR = Visitor.new(self, 'interpolate')
MAPOFFSET_VISITOR = Visitor.new(self, 'map_offset')
def self.infer(o)
if o.instance_of?(Factory)
o
else
new(o)
end
end
attr_reader :model_class, :unfolded
def [](key)
@init_hash[key]
end
def []=(key, value)
@init_hash[key] = value
end
def all_factories(&block)
block.call(self)
@init_hash.each_value { |value| value.all_factories(&block) if value.instance_of?(Factory) }
end
def model
if @current.nil?
# Assign a default Locator if it's missing. Should only happen when the factory is used by other
# means than from a parser (e.g. unit tests)
unless @init_hash.include?(KEY_LOCATOR)
@init_hash[KEY_LOCATOR] = Parser::Locator.locator('<no source>', 'no file')
unless @model_class <= Program
@init_hash[KEY_OFFSET] = 0
@init_hash[KEY_LENGTH] = 0
end
end
@current = create_model
end
@current
end
# Backward API compatibility
alias current model
def create_model
@init_hash.each_pair { |key, elem| @init_hash[key] = factory_to_model(elem) }
model_class.from_asserted_hash(@init_hash)
end
# Initialize a factory with a single object, or a class with arguments applied to build of
# created instance
#
def initialize(o, *args)
@init_hash = {}
if o.instance_of?(Class)
@model_class = o
BUILD_VISITOR.visit_this_class(self, o, args)
else
INFER_VISITOR.visit_this(self, o, EMPTY_ARRAY)
end
end
def map_offset(model, locator)
MAPOFFSET_VISITOR.visit_this_1(self, model, locator)
end
def map_offset_Object(o, locator)
o
end
def map_offset_Factory(o, locator)
map_offset(o.model, locator)
end
def map_offset_Positioned(o, locator)
# Transpose the local offset, length to global "coordinates"
global_offset, global_length = locator.to_global(o.offset, o.length)
# mutate
o.instance_variable_set(:'@offset', global_offset)
o.instance_variable_set(:'@length', global_length)
# Change locator since the positions were transposed to the global coordinates
o.instance_variable_set(:'@locator', locator.locator) if locator.is_a? Puppet::Pops::Parser::Locator::SubLocator
end
# Polymorphic interpolate
def interpolate()
INTERPOLATION_VISITOR.visit_this_class(self, @model_class, EMPTY_ARRAY)
end
# Building of Model classes
def build_ArithmeticExpression(o, op, a, b)
@init_hash[KEY_OPERATOR] = op
build_BinaryExpression(o, a, b)
end
def build_AssignmentExpression(o, op, a, b)
@init_hash[KEY_OPERATOR] = op
build_BinaryExpression(o, a, b)
end
def build_AttributeOperation(o, name, op, value)
@init_hash[KEY_OPERATOR] = op
@init_hash['attribute_name'] = name.to_s # BOOLEAN is allowed in the grammar
@init_hash['value_expr'] = value
end
def build_AttributesOperation(o, value)
@init_hash[KEY_EXPR] = value
end
def build_AccessExpression(o, left, keys)
@init_hash[KEY_LEFT_EXPR] = left
@init_hash[KEY_KEYS] = keys
end
def build_BinaryExpression(o, left, right)
@init_hash[KEY_LEFT_EXPR] = left
@init_hash[KEY_RIGHT_EXPR] = right
end
def build_BlockExpression(o, args)
@init_hash['statements'] = args
end
def build_EppExpression(o, parameters_specified, body)
@init_hash['parameters_specified'] = parameters_specified
b = f_build_body(body)
@init_hash[KEY_BODY] = b unless b.nil?
end
# @param rval_required [Boolean] if the call must produce a value
def build_CallExpression(o, functor, rval_required, args)
@init_hash['functor_expr'] = functor
@init_hash['rval_required'] = rval_required
@init_hash['arguments'] = args
end
def build_CallMethodExpression(o, functor, rval_required, lambda, args)
build_CallExpression(o, functor, rval_required, args)
@init_hash['lambda'] = lambda
end
def build_CaseExpression(o, test, args)
@init_hash['test'] = test
@init_hash['options'] = args
end
def build_CaseOption(o, value_list, then_expr)
value_list = [value_list] unless value_list.is_a?(Array)
@init_hash['values'] = value_list
b = f_build_body(then_expr)
@init_hash['then_expr'] = b unless b.nil?
end
def build_CollectExpression(o, type_expr, query_expr, attribute_operations)
@init_hash['type_expr'] = type_expr
@init_hash['query'] = query_expr
@init_hash['operations'] = attribute_operations
end
def build_ComparisonExpression(o, op, a, b)
@init_hash[KEY_OPERATOR] = op
build_BinaryExpression(o, a, b)
end
def build_ConcatenatedString(o, args)
# Strip empty segments
@init_hash['segments'] = args.reject { |arg| arg.model_class == LiteralString && arg['value'].empty? }
end
def build_HeredocExpression(o, name, expr)
@init_hash['syntax'] = name
@init_hash['text_expr'] = expr
end
# @param name [String] a valid classname
# @param parameters [Array<Parameter>] may be empty
# @param parent_class_name [String, nil] a valid classname referencing a parent class, optional.
# @param body [Array<Expression>, Expression, nil] expression that constitute the body
# @return [HostClassDefinition] configured from the parameters
#
def build_HostClassDefinition(o, name, parameters, parent_class_name, body)
build_NamedDefinition(o, name, parameters, body)
@init_hash['parent_class'] = parent_class_name unless parent_class_name.nil?
end
def build_ResourceOverrideExpression(o, resources, attribute_operations)
@init_hash['resources'] = resources
@init_hash['operations'] = attribute_operations
end
def build_ReservedWord(o, name, future)
@init_hash['word'] = name
@init_hash['future'] = future
end
def build_KeyedEntry(o, k, v)
@init_hash['key'] = k
@init_hash[KEY_VALUE] = v
end
def build_LiteralHash(o, keyed_entries, unfolded)
@init_hash['entries'] = keyed_entries
@unfolded = unfolded
end
def build_LiteralList(o, values)
@init_hash['values'] = values
end
def build_LiteralFloat(o, val)
@init_hash[KEY_VALUE] = val
end
def build_LiteralInteger(o, val, radix)
@init_hash[KEY_VALUE] = val
@init_hash['radix'] = radix
end
def build_LiteralString(o, value)
@init_hash[KEY_VALUE] = val
end
def build_IfExpression(o, t, ift, els)
@init_hash['test'] = t
@init_hash['then_expr'] = ift
@init_hash['else_expr'] = els
end
def build_ApplyExpression(o, args, body)
@init_hash['arguments'] = args
@init_hash['body'] = body
end
def build_MatchExpression(o, op, a, b)
@init_hash[KEY_OPERATOR] = op
build_BinaryExpression(o, a, b)
end
# Building model equivalences of Ruby objects
# Allows passing regular ruby objects to the factory to produce instructions
# that when evaluated produce the same thing.
def infer_String(o)
@model_class = LiteralString
@init_hash[KEY_VALUE] = o
end
def infer_NilClass(o)
@model_class = Nop
end
def infer_TrueClass(o)
@model_class = LiteralBoolean
@init_hash[KEY_VALUE] = o
end
def infer_FalseClass(o)
@model_class = LiteralBoolean
@init_hash[KEY_VALUE] = o
end
def infer_Integer(o)
@model_class = LiteralInteger
@init_hash[KEY_VALUE] = o
end
def infer_Float(o)
@model_class = LiteralFloat
@init_hash[KEY_VALUE] = o
end
def infer_Regexp(o)
@model_class = LiteralRegularExpression
@init_hash['pattern'] = o.inspect
@init_hash[KEY_VALUE] = o
end
# Creates a String literal, unless the symbol is one of the special :undef, or :default
# which instead creates a LiterlUndef, or a LiteralDefault.
# Supports :undef because nil creates a no-op instruction.
def infer_Symbol(o)
case o
when :undef
@model_class = LiteralUndef
when :default
@model_class = LiteralDefault
else
infer_String(o.to_s)
end
end
# Creates a LiteralList instruction from an Array, where the entries are built.
def infer_Array(o)
@model_class = LiteralList
@init_hash['values'] = o.map { |e| Factory.infer(e) }
end
# Create a LiteralHash instruction from a hash, where keys and values are built
# The hash entries are added in sorted order based on key.to_s
#
def infer_Hash(o)
@model_class = LiteralHash
@init_hash['entries'] = o.sort_by { |k,_| k.to_s }.map { |k, v| Factory.new(KeyedEntry, Factory.infer(k), Factory.infer(v)) }
@unfolded = false
end
def f_build_body(body)
case body
when NilClass
nil
when Array
Factory.new(BlockExpression, body)
when Factory
body
else
Factory.infer(body)
end
end
def build_LambdaExpression(o, parameters, body, return_type)
@init_hash[KEY_PARAMETERS] = parameters
b = f_build_body(body)
@init_hash[KEY_BODY] = b unless b.nil?
@init_hash['return_type'] = return_type unless return_type.nil?
end
def build_NamedDefinition(o, name, parameters, body)
@init_hash[KEY_PARAMETERS] = parameters
b = f_build_body(body)
@init_hash[KEY_BODY] = b unless b.nil?
@init_hash[KEY_NAME] = name
end
def build_FunctionDefinition(o, name, parameters, body, return_type)
@init_hash[KEY_PARAMETERS] = parameters
b = f_build_body(body)
@init_hash[KEY_BODY] = b unless b.nil?
@init_hash[KEY_NAME] = name
@init_hash['return_type'] = return_type unless return_type.nil?
end
def build_PlanDefinition(o, name, parameters, body, return_type=nil)
@init_hash[KEY_PARAMETERS] = parameters
b = f_build_body(body)
@init_hash[KEY_BODY] = b unless b.nil?
@init_hash[KEY_NAME] = name
@init_hash['return_type'] = return_type unless return_type.nil?
end
def build_NodeDefinition(o, hosts, parent, body)
@init_hash['host_matches'] = hosts
@init_hash['parent'] = parent unless parent.nil? # no nop here
b = f_build_body(body)
@init_hash[KEY_BODY] = b unless b.nil?
end
def build_Parameter(o, name, expr)
@init_hash[KEY_NAME] = name
@init_hash[KEY_VALUE] = expr
end
def build_QualifiedReference(o, name)
@init_hash['cased_value'] = name.to_s
end
def build_RelationshipExpression(o, op, a, b)
@init_hash[KEY_OPERATOR] = op
build_BinaryExpression(o, a, b)
end
def build_ResourceExpression(o, type_name, bodies)
@init_hash['type_name'] = type_name
@init_hash['bodies'] = bodies
end
def build_RenderStringExpression(o, string)
@init_hash[KEY_VALUE] = string;
end
def build_ResourceBody(o, title_expression, attribute_operations)
@init_hash['title'] = title_expression
@init_hash['operations'] = attribute_operations
end
def build_ResourceDefaultsExpression(o, type_ref, attribute_operations)
@init_hash['type_ref'] = type_ref
@init_hash['operations'] = attribute_operations
end
def build_SelectorExpression(o, left, *selectors)
@init_hash[KEY_LEFT_EXPR] = left
@init_hash['selectors'] = selectors
end
def build_SelectorEntry(o, matching, value)
@init_hash['matching_expr'] = matching
@init_hash['value_expr'] = value
end
def build_QueryExpression(o, expr)
@init_hash[KEY_EXPR] = expr unless Factory.nop?(expr)
end
def build_TypeAlias(o, name, type_expr)
if type_expr.model_class <= KeyedEntry
# KeyedEntry is used for the form:
#
# type Foo = Bar { ... }
#
# The entry contains Bar => { ... } and must be transformed into:
#
# Object[{parent => Bar, ... }]
#
parent = type_expr['key']
hash = type_expr['value']
pn = parent['cased_value']
unless pn == 'Object' || pn == 'TypeSet'
hash['entries'] << Factory.KEY_ENTRY(Factory.QNAME('parent'), parent)
parent = Factory.QREF('Object')
end
type_expr = parent.access([hash])
elsif type_expr.model_class <= LiteralHash
# LiteralHash is used for the form:
#
# type Foo = { ... }
#
# The hash must be transformed into:
#
# Object[{ ... }]
#
type_expr = Factory.QREF('Object').access([type_expr])
end
@init_hash['type_expr'] = type_expr
@init_hash[KEY_NAME] = name
end
def build_TypeMapping(o, lhs, rhs)
@init_hash['type_expr'] = lhs
@init_hash['mapping_expr'] = rhs
end
def build_TypeDefinition(o, name, parent, body)
b = f_build_body(body)
@init_hash[KEY_BODY] = b unless b.nil?
@init_hash['parent'] = parent
@init_hash[KEY_NAME] = name
end
def build_UnaryExpression(o, expr)
@init_hash[KEY_EXPR] = expr unless Factory.nop?(expr)
end
def build_Program(o, body, definitions, locator)
@init_hash[KEY_BODY] = body
# non containment
@init_hash['definitions'] = definitions
@init_hash[KEY_LOCATOR] = locator
end
def build_QualifiedName(o, name)
@init_hash[KEY_VALUE] = name
end
def build_TokenValue(o)
raise "Factory can not deal with a Lexer Token. Got token: #{o}. Probably caused by wrong index in grammar val[n]."
end
# Factory helpers
def f_build_unary(klazz, expr)
Factory.new(klazz, expr)
end
def f_build_binary_op(klazz, op, left, right)
Factory.new(klazz, op, left, right)
end
def f_build_binary(klazz, left, right)
Factory.new(klazz, left, right)
end
def f_arithmetic(op, r)
f_build_binary_op(ArithmeticExpression, op, self, r)
end
def f_comparison(op, r)
f_build_binary_op(ComparisonExpression, op, self, r)
end
def f_match(op, r)
f_build_binary_op(MatchExpression, op, self, r)
end
# Operator helpers
def in(r) f_build_binary(InExpression, self, r); end
def or(r) f_build_binary(OrExpression, self, r); end
def and(r) f_build_binary(AndExpression, self, r); end
def not(); f_build_unary(NotExpression, self); end
def minus(); f_build_unary(UnaryMinusExpression, self); end
def unfold(); f_build_unary(UnfoldExpression, self); end
def text(); f_build_unary(TextExpression, self); end
def var(); f_build_unary(VariableExpression, self); end
def access(r); f_build_binary(AccessExpression, self, r); end
def dot r; f_build_binary(NamedAccessExpression, self, r); end
def + r; f_arithmetic('+', r); end
def - r; f_arithmetic('-', r); end
def / r; f_arithmetic('/', r); end
def * r; f_arithmetic('*', r); end
def % r; f_arithmetic('%', r); end
def << r; f_arithmetic('<<', r); end
def >> r; f_arithmetic('>>', r); end
def < r; f_comparison('<', r); end
def <= r; f_comparison('<=', r); end
def > r; f_comparison('>', r); end
def >= r; f_comparison('>=', r); end
def eq r; f_comparison('==', r); end
def ne r; f_comparison('!=', r); end
def =~ r; f_match('=~', r); end
def mne r; f_match('!~', r); end
def paren; f_build_unary(ParenthesizedExpression, self); end
def relop(op, r)
f_build_binary_op(RelationshipExpression, op, self, r)
end
def select(*args)
Factory.new(SelectorExpression, self, *args)
end
# Same as access, but with varargs and arguments that must be inferred. For testing purposes
def access_at(*r)
f_build_binary(AccessExpression, self, r.map { |arg| Factory.infer(arg) })
end
# For CaseExpression, setting the default for an already build CaseExpression
def default(r)
@init_hash['options'] << Factory.WHEN(Factory.infer(:default), r)
self
end
def lambda=(lambda)
@init_hash['lambda'] = lambda
self
end
# Assignment =
def set(r)
f_build_binary_op(AssignmentExpression, '=', self, r)
end
# Assignment +=
def plus_set(r)
f_build_binary_op(AssignmentExpression, '+=', self, r)
end
# Assignment -=
def minus_set(r)
f_build_binary_op(AssignmentExpression, '-=', self, r)
end
def attributes(*args)
@init_hash['attributes'] = args
self
end
def offset
@init_hash[KEY_OFFSET]
end
def length
@init_hash[KEY_LENGTH]
end
# Records the position (start -> end) and computes the resulting length.
#
def record_position(locator, start_locatable, end_locatable)
# record information directly in the Positioned object
start_offset = start_locatable.offset
@init_hash[KEY_LOCATOR] = locator
@init_hash[KEY_OFFSET] = start_offset
@init_hash[KEY_LENGTH] = end_locatable.nil? ? start_locatable.length : end_locatable.offset + end_locatable.length - start_offset
self
end
# Sets the form of the resource expression (:regular (the default), :virtual, or :exported).
# Produces true if the expression was a resource expression, false otherwise.
#
def self.set_resource_form(expr, form)
# Note: Validation handles illegal combinations
return false unless expr.instance_of?(self) && expr.model_class <= AbstractResource
expr['form'] = form
return true
end
# Returns symbolic information about an expected shape of a resource expression given the LHS of a resource expr.
#
# * `name { }` => `:resource`, create a resource of the given type
# * `Name { }` => ':defaults`, set defaults for the referenced type
# * `Name[] { }` => `:override`, overrides instances referenced by LHS
# * _any other_ => ':error', all other are considered illegal
#
def self.resource_shape(expr)
if expr == 'class'
:class
elsif expr.instance_of?(self)
mc = expr.model_class
if mc <= QualifiedName
:resource
elsif mc <= QualifiedReference
:defaults
elsif mc <= AccessExpression
# if Resource[e], then it is not resource specific
lhs = expr[KEY_LEFT_EXPR]
if lhs.model_class <= QualifiedReference && lhs[KEY_VALUE] == 'resource' && expr[KEY_KEYS].size == 1
:defaults
else
:override
end
else
:error
end
else
:error
end
end
# Factory starting points
def self.literal(o); infer(o); end
def self.minus(o); infer(o).minus; end
def self.unfold(o); infer(o).unfold; end
def self.var(o); infer(o).var; end
def self.block(*args); new(BlockExpression, args.map { |arg| infer(arg) }); end
def self.string(*args); new(ConcatenatedString, args.map { |arg| infer(arg) }); end
def self.text(o); infer(o).text; end
def self.IF(test_e,then_e,else_e); new(IfExpression, test_e, then_e, else_e); end
def self.UNLESS(test_e,then_e,else_e); new(UnlessExpression, test_e, then_e, else_e); end
def self.CASE(test_e,*options); new(CaseExpression, test_e, options); end
def self.WHEN(values_list, block); new(CaseOption, values_list, block); end
def self.MAP(match, value); new(SelectorEntry, match, value); end
def self.KEY_ENTRY(key, val); new(KeyedEntry, key, val); end
def self.HASH(entries); new(LiteralHash, entries, false); end
def self.HASH_UNFOLDED(entries); new(LiteralHash, entries, true); end
def self.HEREDOC(name, expr); new(HeredocExpression, name, expr); end
def self.STRING(*args); new(ConcatenatedString, args); end
def self.LIST(entries); new(LiteralList, entries); end
def self.PARAM(name, expr=nil); new(Parameter, name, expr); end
def self.NODE(hosts, parent, body); new(NodeDefinition, hosts, parent, body); end
# Parameters
# Mark parameter as capturing the rest of arguments
def captures_rest
@init_hash['captures_rest'] = true
end
# Set Expression that should evaluate to the parameter's type
def type_expr(o)
@init_hash['type_expr'] = o
end
# Creates a QualifiedName representation of o, unless o already represents a QualifiedName in which
# case it is returned.
#
def self.fqn(o)
o.instance_of?(Factory) && o.model_class <= QualifiedName ? self : new(QualifiedName, o)
end
# Creates a QualifiedName representation of o, unless o already represents a QualifiedName in which
# case it is returned.
#
def self.fqr(o)
o.instance_of?(Factory) && o.model_class <= QualifiedReference ? self : new(QualifiedReference, o)
end
def self.SUBLOCATE(token, expr_factory)
# expr is a Factory wrapped LiteralString, or ConcatenatedString
# The token is SUBLOCATED token which has a SubLocator as the token's locator
# Use the SubLocator to recalculate the offsets and lengths.
model = expr_factory.model
locator = token.locator
expr_factory.map_offset(model, locator)
model._pcore_all_contents([]) { |element| expr_factory.map_offset(element, locator) }
# Returned the factory wrapping the now offset/length transformed expression(s)
expr_factory
end
def self.TEXT(expr)
new(TextExpression, infer(expr).interpolate)
end
# TODO_EPP
def self.RENDER_STRING(o)
new(RenderStringExpression, o)
end
def self.RENDER_EXPR(expr)
new(RenderExpression, expr)
end
def self.EPP(parameters, body)
if parameters.nil?
params = []
parameters_specified = false
else
params = parameters
parameters_specified = true
end
LAMBDA(params, new(EppExpression, parameters_specified, body), nil)
end
def self.RESERVED(name, future=false)
new(ReservedWord, name, future)
end
# TODO: This is the same a fqn factory method, don't know if callers to fqn and QNAME can live with the
# same result or not yet - refactor into one method when decided.
#
def self.QNAME(name)
new(QualifiedName, name)
end
def self.NUMBER(name_or_numeric)
n_radix = Utils.to_n_with_radix(name_or_numeric)
if n_radix
val, radix = n_radix
if val.is_a?(Float)
new(LiteralFloat, val)
else
new(LiteralInteger, val, radix)
end
else
# Bad number should already have been caught by lexer - this should never happen
#TRANSLATORS 'NUMBER' refers to a method name and the 'name_or_numeric' was the passed in value and should not be translated
raise ArgumentError, _("Internal Error, NUMBER token does not contain a valid number, %{name_or_numeric}") %
{ name_or_numeric: name_or_numeric }
end
end
# Convert input string to either a qualified name, a LiteralInteger with radix, or a LiteralFloat
#
def self.QNAME_OR_NUMBER(name)
n_radix = Utils.to_n_with_radix(name)
if n_radix
val, radix = n_radix
if val.is_a?(Float)
new(LiteralFloat, val)
else
new(LiteralInteger, val, radix)
end
else
new(QualifiedName, name)
end
end
def self.QREF(name)
new(QualifiedReference, name)
end
def self.VIRTUAL_QUERY(query_expr)
new(VirtualQuery, query_expr)
end
def self.EXPORTED_QUERY(query_expr)
new(ExportedQuery, query_expr)
end
def self.ARGUMENTS(args, arg)
if !args.empty? && arg.model_class <= LiteralHash && arg.unfolded
last = args[args.size() - 1]
if last.model_class <= LiteralHash && last.unfolded
last['entries'].concat(arg['entries'])
return args
end
end
args.push(arg)
end
def self.ATTRIBUTE_OP(name, op, expr)
new(AttributeOperation, name, op, expr)
end
def self.ATTRIBUTES_OP(expr)
new(AttributesOperation, expr)
end
# Same as CALL_NAMED but with inference and varargs (for testing purposes)
def self.call_named(name, rval_required, *argument_list)
new(CallNamedFunctionExpression, fqn(name), rval_required, argument_list.map { |arg| infer(arg) })
end
def self.CALL_NAMED(name, rval_required, argument_list)
new(CallNamedFunctionExpression, name, rval_required, argument_list)
end
def self.CALL_METHOD(functor, argument_list)
new(CallMethodExpression, functor, true, nil, argument_list)
end
def self.COLLECT(type_expr, query_expr, attribute_operations)
new(CollectExpression, type_expr, query_expr, attribute_operations)
end
def self.NAMED_ACCESS(type_name, bodies)
new(NamedAccessExpression, type_name, bodies)
end
def self.RESOURCE(type_name, bodies)
new(ResourceExpression, type_name, bodies)
end
def self.RESOURCE_DEFAULTS(type_name, attribute_operations)
new(ResourceDefaultsExpression, type_name, attribute_operations)
end
def self.RESOURCE_OVERRIDE(resource_ref, attribute_operations)
new(ResourceOverrideExpression, resource_ref, attribute_operations)
end
def self.RESOURCE_BODY(resource_title, attribute_operations)
new(ResourceBody, resource_title, attribute_operations)
end
def self.PROGRAM(body, definitions, locator)
new(Program, body, definitions, locator)
end
# Builds a BlockExpression if args size > 1, else the single expression/value in args
def self.block_or_expression(args, left_brace = nil, right_brace = nil)
if args.size > 1
block_expr = new(BlockExpression, args)
# If given a left and right brace position, use those
# otherwise use the first and last element of the block
if !left_brace.nil? && !right_brace.nil?
block_expr.record_position(args.first[KEY_LOCATOR], left_brace, right_brace)
else
block_expr.record_position(args.first[KEY_LOCATOR], args.first, args.last)
end
block_expr
else
args[0]
end
end
def self.HOSTCLASS(name, parameters, parent, body)
new(HostClassDefinition, name, parameters, parent, body)
end
def self.DEFINITION(name, parameters, body)
new(ResourceTypeDefinition, name, parameters, body)
end
def self.PLAN(name, parameters, body)
new(PlanDefinition, name, parameters, body, nil)
end
def self.APPLY(arguments, body)
new(ApplyExpression, arguments, body)
end
def self.APPLY_BLOCK(statements)
new(ApplyBlockExpression, statements)
end
def self.FUNCTION(name, parameters, body, return_type)
new(FunctionDefinition, name, parameters, body, return_type)
end
def self.LAMBDA(parameters, body, return_type)
new(LambdaExpression, parameters, body, return_type)
end
def self.TYPE_ASSIGNMENT(lhs, rhs)
if lhs.model_class <= AccessExpression
new(TypeMapping, lhs, rhs)
else
new(TypeAlias, lhs['cased_value'], rhs)
end
end
def self.TYPE_DEFINITION(name, parent, body)
new(TypeDefinition, name, parent, body)
end
def self.nop? o
o.nil? || o.instance_of?(Factory) && o.model_class <= Nop
end
STATEMENT_CALLS = {
'require' => true,
'realize' => true,
'include' => true,
'contain' => true,
'tag' => true,
'debug' => true,
'info' => true,
'notice' => true,
'warning' => true,
'err' => true,
'fail' => true,
'import' => true, # discontinued, but transform it to make it call error reporting function
'break' => true,
'next' => true,
'return' => true
}.freeze
# Returns true if the given name is a "statement keyword" (require, include, contain,
# error, notice, info, debug
#
def self.name_is_statement?(name)
STATEMENT_CALLS.include?(name)
end
class ArgsToNonCallError < RuntimeError
attr_reader :args, :name_expr
def initialize(args, name_expr)
@args = args
@name_expr = name_expr
end
end
# Transforms an array of expressions containing literal name expressions to calls if followed by an
# expression, or expression list.
#
def self.transform_calls(expressions)
expressions.reduce([]) do |memo, expr|
name = memo[-1]
if name.instance_of?(Factory) && name.model_class <= QualifiedName && name_is_statement?(name[KEY_VALUE])
if expr.is_a?(Array)
expr = expr.reject { |e| e.is_a?(Parser::LexerSupport::TokenValue) }
else
expr = [expr]
end
the_call = self.CALL_NAMED(name, false, expr)
# last positioned is last arg if there are several
the_call.record_position(name[KEY_LOCATOR], name, expr[-1])
memo[-1] = the_call
if expr.is_a?(CallNamedFunctionExpression)
# Patch statement function call to expression style
# This is needed because it is first parsed as a "statement" and the requirement changes as it becomes
# an argument to the name to call transform above.
expr.rval_required = true
end
elsif expr.is_a?(Array)
raise ArgsToNonCallError.new(expr, name)
else
memo << expr
if expr.model_class <= CallNamedFunctionExpression
# Patch rvalue expression function call to statement style.
# This is not really required but done to be AST model compliant
expr['rval_required'] = false
end
end
memo
end
end
# Transforms a left expression followed by an untitled resource (in the form of attribute_operations)
# @param left [Factory, Expression] the lhs followed what may be a hash
def self.transform_resource_wo_title(left, attribute_ops, lbrace_token, rbrace_token)
# Returning nil means accepting the given as a potential resource expression
return nil unless attribute_ops.is_a? Array
return nil unless left.model_class <= QualifiedName
keyed_entries = attribute_ops.map do |ao|
return nil if ao[KEY_OPERATOR] == '+>'
KEY_ENTRY(infer(ao['attribute_name']), ao['value_expr'])
end
a_hash = HASH(keyed_entries)
a_hash.record_position(left[KEY_LOCATOR], lbrace_token, rbrace_token)
result = block_or_expression(transform_calls([left, a_hash]))
result
end
def interpolate_Factory(c)
self
end
def interpolate_LiteralInteger(c)
# convert number to a variable
self.var
end
def interpolate_Object(c)
self
end
def interpolate_QualifiedName(c)
self.var
end
# rewrite left expression to variable if it is name, number, and recurse if it is an access expression
# this is for interpolation support in new lexer (${NAME}, ${NAME[}}, ${NUMBER}, ${NUMBER[]} - all
# other expressions requires variables to be preceded with $
#
def interpolate_AccessExpression(c)
lhs = @init_hash[KEY_LEFT_EXPR]
if is_interop_rewriteable?(lhs)
@init_hash[KEY_LEFT_EXPR] = lhs.interpolate
end
self
end
def interpolate_NamedAccessExpression(c)
lhs = @init_hash[KEY_LEFT_EXPR]
if is_interop_rewriteable?(lhs)
@init_hash[KEY_LEFT_EXPR] = lhs.interpolate
end
self
end
# Rewrite method calls on the form ${x.each ...} to ${$x.each}
def interpolate_CallMethodExpression(c)
functor_expr = @init_hash['functor_expr']
if is_interop_rewriteable?(functor_expr)
@init_hash['functor_expr'] = functor_expr.interpolate
end
self
end
def is_interop_rewriteable?(o)
mc = o.model_class
if mc <= AccessExpression || mc <= QualifiedName || mc <= NamedAccessExpression || mc <= CallMethodExpression
true
elsif mc <= LiteralInteger
# Only decimal integers can represent variables, else it is a number
o['radix'] == 10
else
false
end
end
def self.concat(*args)
result = ''.dup
args.each do |e|
if e.instance_of?(Factory) && e.model_class <= LiteralString
result << e[KEY_VALUE]
elsif e.is_a?(String)
result << e
else
raise ArgumentError, _("can only concatenate strings, got %{class_name}") % { class_name: e.class }
end
end
infer(result)
end
def to_s
"Factory for #{@model_class}"
end
def factory_to_model(value)
if value.instance_of?(Factory)
value.contained_current(self)
elsif value.instance_of?(Array)
value.each_with_index { |el, idx| value[idx] = el.contained_current(self) if el.instance_of?(Factory) }
else
value
end
end
def contained_current(container)
if @current.nil?
unless @init_hash.include?(KEY_LOCATOR)
@init_hash[KEY_LOCATOR] = container[KEY_LOCATOR]
@init_hash[KEY_OFFSET] = container[KEY_OFFSET] || 0
@init_hash[KEY_LENGTH] = 0
end
@current = create_model
end
@current
end
end
end
end