Current File : //opt/puppetlabs/puppet/lib/ruby/vendor_ruby/puppet/pops/model/factory.rb
# frozen_string_literal: true
# Factory is a helper class that makes construction of a Pops Model
# much more convenient. It can be viewed as a small internal DSL for model
# constructions.
# For usage see tests using the factory.
#
# @todo All those uppercase methods ... they look bad in one way, but stand out nicely in the grammar...
#   decide if they should change into lower case names (some of the are lower case)...
#
module Puppet::Pops
module Model
class Factory
  # Shared build_visitor, since there are many instances of Factory being used

  KEY_LENGTH = 'length'
  KEY_OFFSET = 'offset'
  KEY_LOCATOR = 'locator'
  KEY_OPERATOR = 'operator'

  KEY_VALUE = 'value'
  KEY_KEYS = 'keys'
  KEY_NAME = 'name'
  KEY_BODY = 'body'
  KEY_EXPR = 'expr'
  KEY_LEFT_EXPR = 'left_expr'
  KEY_RIGHT_EXPR = 'right_expr'
  KEY_PARAMETERS = 'parameters'

  BUILD_VISITOR = Visitor.new(self, 'build')
  INFER_VISITOR = Visitor.new(self, 'infer')
  INTERPOLATION_VISITOR = Visitor.new(self, 'interpolate')
  MAPOFFSET_VISITOR = Visitor.new(self, 'map_offset')

  def self.infer(o)
    if o.instance_of?(Factory)
      o
    else
      new(o)
    end
  end

  attr_reader :model_class, :unfolded

  def [](key)
    @init_hash[key]
  end

  def []=(key, value)
    @init_hash[key] = value
  end

  def all_factories(&block)
    block.call(self)
    @init_hash.each_value { |value| value.all_factories(&block) if value.instance_of?(Factory) }
  end

  def model
    if @current.nil?
      # Assign a default Locator if it's missing. Should only happen when the factory is used by other
      # means than from a parser (e.g. unit tests)
      unless @init_hash.include?(KEY_LOCATOR)
        @init_hash[KEY_LOCATOR] = Parser::Locator.locator('<no source>', 'no file')
        unless @model_class <= Program
          @init_hash[KEY_OFFSET] = 0
          @init_hash[KEY_LENGTH] = 0
        end
      end
      @current = create_model
    end
    @current
  end

  # Backward API compatibility
  alias current model

  def create_model
    @init_hash.each_pair { |key, elem| @init_hash[key] = factory_to_model(elem) }
    model_class.from_asserted_hash(@init_hash)
  end

  # Initialize a factory with a single object, or a class with arguments applied to build of
  # created instance
  #
  def initialize(o, *args)
    @init_hash = {}
    if o.instance_of?(Class)
      @model_class = o
      BUILD_VISITOR.visit_this_class(self, o, args)
    else
      INFER_VISITOR.visit_this(self, o, EMPTY_ARRAY)
    end
  end

  def map_offset(model, locator)
    MAPOFFSET_VISITOR.visit_this_1(self, model, locator)
  end

  def map_offset_Object(o, locator)
    o
  end

  def map_offset_Factory(o, locator)
    map_offset(o.model, locator)
  end

  def map_offset_Positioned(o, locator)
    # Transpose the local offset, length to global "coordinates"
    global_offset, global_length = locator.to_global(o.offset, o.length)

    # mutate
    o.instance_variable_set(:'@offset', global_offset)
    o.instance_variable_set(:'@length', global_length)
    # Change locator since the positions were transposed to the global coordinates
    o.instance_variable_set(:'@locator', locator.locator) if locator.is_a? Puppet::Pops::Parser::Locator::SubLocator
  end

  # Polymorphic interpolate
  def interpolate()
    INTERPOLATION_VISITOR.visit_this_class(self, @model_class, EMPTY_ARRAY)
  end

  # Building of Model classes

  def build_ArithmeticExpression(o, op, a, b)
    @init_hash[KEY_OPERATOR] = op
    build_BinaryExpression(o, a, b)
  end

  def build_AssignmentExpression(o, op, a, b)
    @init_hash[KEY_OPERATOR] = op
    build_BinaryExpression(o, a, b)
  end

  def build_AttributeOperation(o, name, op, value)
    @init_hash[KEY_OPERATOR] = op
    @init_hash['attribute_name'] = name.to_s # BOOLEAN is allowed in the grammar
    @init_hash['value_expr'] = value
  end

  def build_AttributesOperation(o, value)
    @init_hash[KEY_EXPR] = value
  end

  def build_AccessExpression(o, left, keys)
    @init_hash[KEY_LEFT_EXPR] = left
    @init_hash[KEY_KEYS] = keys
  end

  def build_BinaryExpression(o, left, right)
    @init_hash[KEY_LEFT_EXPR] = left
    @init_hash[KEY_RIGHT_EXPR] = right
  end

  def build_BlockExpression(o, args)
    @init_hash['statements'] = args
  end

  def build_EppExpression(o, parameters_specified, body)
    @init_hash['parameters_specified'] = parameters_specified
    b = f_build_body(body)
    @init_hash[KEY_BODY] = b unless b.nil?
  end

  # @param rval_required [Boolean] if the call must produce a value
  def build_CallExpression(o, functor, rval_required, args)
    @init_hash['functor_expr'] = functor
    @init_hash['rval_required'] = rval_required
    @init_hash['arguments'] = args
  end

  def build_CallMethodExpression(o, functor, rval_required, lambda, args)
    build_CallExpression(o, functor, rval_required, args)
    @init_hash['lambda'] = lambda
  end

  def build_CaseExpression(o, test, args)
    @init_hash['test'] = test
    @init_hash['options'] = args
  end

  def build_CaseOption(o, value_list, then_expr)
    value_list = [value_list] unless value_list.is_a?(Array)
    @init_hash['values'] = value_list
    b = f_build_body(then_expr)
    @init_hash['then_expr'] = b unless b.nil?
  end

  def build_CollectExpression(o, type_expr, query_expr, attribute_operations)
    @init_hash['type_expr'] = type_expr
    @init_hash['query'] = query_expr
    @init_hash['operations'] = attribute_operations
  end

  def build_ComparisonExpression(o, op, a, b)
    @init_hash[KEY_OPERATOR] = op
    build_BinaryExpression(o, a, b)
  end

  def build_ConcatenatedString(o, args)
    # Strip empty segments
    @init_hash['segments'] = args.reject { |arg| arg.model_class == LiteralString && arg['value'].empty? }
  end

  def build_HeredocExpression(o, name, expr)
    @init_hash['syntax'] = name
    @init_hash['text_expr'] = expr
  end

  # @param name [String] a valid classname
  # @param parameters [Array<Parameter>] may be empty
  # @param parent_class_name [String, nil] a valid classname referencing a parent class, optional.
  # @param body [Array<Expression>, Expression, nil] expression that constitute the body
  # @return [HostClassDefinition] configured from the parameters
  #
  def build_HostClassDefinition(o, name, parameters, parent_class_name, body)
    build_NamedDefinition(o, name, parameters, body)
    @init_hash['parent_class'] = parent_class_name unless parent_class_name.nil?
  end

  def build_ResourceOverrideExpression(o, resources, attribute_operations)
    @init_hash['resources'] = resources
    @init_hash['operations'] = attribute_operations
  end

  def build_ReservedWord(o, name, future)
    @init_hash['word'] = name
    @init_hash['future'] = future
  end

  def build_KeyedEntry(o, k, v)
    @init_hash['key'] = k
    @init_hash[KEY_VALUE] = v
  end

  def build_LiteralHash(o, keyed_entries, unfolded)
    @init_hash['entries'] = keyed_entries
    @unfolded = unfolded
  end

  def build_LiteralList(o, values)
    @init_hash['values'] = values
  end

  def build_LiteralFloat(o, val)
    @init_hash[KEY_VALUE] = val
  end

  def build_LiteralInteger(o, val, radix)
    @init_hash[KEY_VALUE] = val
    @init_hash['radix'] = radix
  end

  def build_LiteralString(o, value)
    @init_hash[KEY_VALUE] = val
  end

  def build_IfExpression(o, t, ift, els)
    @init_hash['test'] = t
    @init_hash['then_expr'] = ift
    @init_hash['else_expr'] = els
  end

  def build_ApplyExpression(o, args, body)
    @init_hash['arguments'] = args
    @init_hash['body'] = body
  end

  def build_MatchExpression(o, op, a, b)
    @init_hash[KEY_OPERATOR] = op
    build_BinaryExpression(o, a, b)
  end

  # Building model equivalences of Ruby objects
  # Allows passing regular ruby objects to the factory to produce instructions
  # that when evaluated produce the same thing.

  def infer_String(o)
    @model_class = LiteralString
    @init_hash[KEY_VALUE] = o
  end

  def infer_NilClass(o)
    @model_class = Nop
  end

  def infer_TrueClass(o)
    @model_class = LiteralBoolean
    @init_hash[KEY_VALUE] = o
  end

  def infer_FalseClass(o)
    @model_class = LiteralBoolean
    @init_hash[KEY_VALUE] = o
  end

  def infer_Integer(o)
    @model_class = LiteralInteger
    @init_hash[KEY_VALUE] = o
  end

  def infer_Float(o)
    @model_class = LiteralFloat
    @init_hash[KEY_VALUE] = o
  end

  def infer_Regexp(o)
    @model_class = LiteralRegularExpression
    @init_hash['pattern'] = o.inspect
    @init_hash[KEY_VALUE] = o
  end

  # Creates a String literal, unless the symbol is one of the special :undef, or :default
  # which instead creates a LiterlUndef, or a LiteralDefault.
  # Supports :undef because nil creates a no-op instruction.
  def infer_Symbol(o)
    case o
    when :undef
      @model_class = LiteralUndef
    when :default
      @model_class = LiteralDefault
    else
      infer_String(o.to_s)
    end
  end

  # Creates a LiteralList instruction from an Array, where the entries are built.
  def infer_Array(o)
    @model_class = LiteralList
    @init_hash['values'] = o.map { |e| Factory.infer(e) }
  end

  # Create a LiteralHash instruction from a hash, where keys and values are built
  # The hash entries are added in sorted order based on key.to_s
  #
  def infer_Hash(o)
    @model_class = LiteralHash
    @init_hash['entries'] = o.sort_by { |k,_| k.to_s }.map { |k, v| Factory.new(KeyedEntry, Factory.infer(k), Factory.infer(v)) }
    @unfolded = false
  end

  def f_build_body(body)
    case body
    when NilClass
      nil
    when Array
      Factory.new(BlockExpression, body)
    when Factory
      body
    else
      Factory.infer(body)
    end
  end

  def build_LambdaExpression(o, parameters, body, return_type)
    @init_hash[KEY_PARAMETERS] = parameters
    b = f_build_body(body)
    @init_hash[KEY_BODY] = b unless b.nil?
    @init_hash['return_type'] = return_type unless return_type.nil?
  end

  def build_NamedDefinition(o, name, parameters, body)
    @init_hash[KEY_PARAMETERS] = parameters
    b = f_build_body(body)
    @init_hash[KEY_BODY] = b unless b.nil?
    @init_hash[KEY_NAME] = name
  end

  def build_FunctionDefinition(o, name, parameters, body, return_type)
    @init_hash[KEY_PARAMETERS] = parameters
    b = f_build_body(body)
    @init_hash[KEY_BODY] = b unless b.nil?
    @init_hash[KEY_NAME] = name
    @init_hash['return_type'] = return_type unless return_type.nil?
  end

  def build_PlanDefinition(o, name, parameters, body, return_type=nil)
    @init_hash[KEY_PARAMETERS] = parameters
    b = f_build_body(body)
    @init_hash[KEY_BODY] = b unless b.nil?
    @init_hash[KEY_NAME] = name
    @init_hash['return_type'] = return_type unless return_type.nil?
  end

  def build_NodeDefinition(o, hosts, parent, body)
    @init_hash['host_matches'] = hosts
    @init_hash['parent'] = parent unless parent.nil? # no nop here
    b = f_build_body(body)
    @init_hash[KEY_BODY] = b unless b.nil?
  end

  def build_Parameter(o, name, expr)
    @init_hash[KEY_NAME] = name
    @init_hash[KEY_VALUE] = expr
  end

  def build_QualifiedReference(o, name)
    @init_hash['cased_value'] = name.to_s
  end

  def build_RelationshipExpression(o, op, a, b)
    @init_hash[KEY_OPERATOR] = op
    build_BinaryExpression(o, a, b)
  end

  def build_ResourceExpression(o, type_name, bodies)
    @init_hash['type_name'] = type_name
    @init_hash['bodies'] = bodies
  end

  def build_RenderStringExpression(o, string)
    @init_hash[KEY_VALUE] = string;
  end

  def build_ResourceBody(o, title_expression, attribute_operations)
    @init_hash['title'] = title_expression
    @init_hash['operations'] = attribute_operations
  end

  def build_ResourceDefaultsExpression(o, type_ref, attribute_operations)
    @init_hash['type_ref'] = type_ref
    @init_hash['operations'] = attribute_operations
  end

  def build_SelectorExpression(o, left, *selectors)
    @init_hash[KEY_LEFT_EXPR] = left
    @init_hash['selectors'] = selectors
  end

  def build_SelectorEntry(o, matching, value)
    @init_hash['matching_expr'] = matching
    @init_hash['value_expr'] = value
  end

  def build_QueryExpression(o, expr)
    @init_hash[KEY_EXPR] = expr unless Factory.nop?(expr)
  end

  def build_TypeAlias(o, name, type_expr)
    if type_expr.model_class <= KeyedEntry
      # KeyedEntry is used for the form:
      #
      #   type Foo = Bar { ... }
      #
      # The entry contains Bar => { ... } and must be transformed into:
      #
      #   Object[{parent => Bar, ... }]
      #
      parent = type_expr['key']
      hash = type_expr['value']
      pn = parent['cased_value']
      unless pn == 'Object' || pn == 'TypeSet'
        hash['entries'] << Factory.KEY_ENTRY(Factory.QNAME('parent'), parent)
        parent = Factory.QREF('Object')
      end
      type_expr = parent.access([hash])
    elsif type_expr.model_class <= LiteralHash
      # LiteralHash is used for the form:
      #
      #   type Foo = { ... }
      #
      # The hash must be transformed into:
      #
      #   Object[{ ... }]
      #
      type_expr = Factory.QREF('Object').access([type_expr])
    end
    @init_hash['type_expr'] = type_expr
    @init_hash[KEY_NAME] = name
  end

  def build_TypeMapping(o, lhs, rhs)
    @init_hash['type_expr'] = lhs
    @init_hash['mapping_expr'] = rhs
  end

  def build_TypeDefinition(o, name, parent, body)
    b = f_build_body(body)
    @init_hash[KEY_BODY] = b unless b.nil?
    @init_hash['parent'] = parent
    @init_hash[KEY_NAME] = name
  end

  def build_UnaryExpression(o, expr)
    @init_hash[KEY_EXPR] = expr unless Factory.nop?(expr)
  end

  def build_Program(o, body, definitions, locator)
    @init_hash[KEY_BODY] = body
    # non containment
    @init_hash['definitions'] = definitions
    @init_hash[KEY_LOCATOR] = locator
  end

  def build_QualifiedName(o, name)
    @init_hash[KEY_VALUE] = name
  end

  def build_TokenValue(o)
    raise "Factory can not deal with a Lexer Token. Got token: #{o}. Probably caused by wrong index in grammar val[n]."
  end

  # Factory helpers
  def f_build_unary(klazz, expr)
    Factory.new(klazz, expr)
  end

  def f_build_binary_op(klazz, op, left, right)
    Factory.new(klazz, op, left, right)
  end

  def f_build_binary(klazz, left, right)
    Factory.new(klazz, left, right)
  end

  def f_arithmetic(op, r)
    f_build_binary_op(ArithmeticExpression, op, self, r)
  end

  def f_comparison(op, r)
    f_build_binary_op(ComparisonExpression, op, self, r)
  end

  def f_match(op, r)
    f_build_binary_op(MatchExpression, op, self, r)
  end

  # Operator helpers
  def in(r)     f_build_binary(InExpression, self, r);          end

  def or(r)     f_build_binary(OrExpression, self, r);          end

  def and(r)    f_build_binary(AndExpression, self, r);         end

  def not();    f_build_unary(NotExpression, self);             end

  def minus();  f_build_unary(UnaryMinusExpression, self);      end

  def unfold(); f_build_unary(UnfoldExpression, self);          end

  def text();   f_build_unary(TextExpression, self);            end

  def var();    f_build_unary(VariableExpression, self);        end

  def access(r); f_build_binary(AccessExpression, self, r);     end

  def dot r;    f_build_binary(NamedAccessExpression, self, r); end

  def + r;      f_arithmetic('+', r);                           end

  def - r;      f_arithmetic('-', r);                           end

  def / r;      f_arithmetic('/', r);                           end

  def * r;      f_arithmetic('*', r);                           end

  def % r;      f_arithmetic('%', r);                           end

  def << r;     f_arithmetic('<<', r);                          end

  def >> r;     f_arithmetic('>>', r);                          end

  def < r;      f_comparison('<', r);                           end

  def <= r;     f_comparison('<=', r);                          end

  def > r;      f_comparison('>', r);                           end

  def >= r;     f_comparison('>=', r);                          end

  def eq r;     f_comparison('==', r);                          end

  def ne r;     f_comparison('!=', r);                          end

  def =~ r;     f_match('=~', r);                               end

  def mne r;    f_match('!~', r);                               end

  def paren;    f_build_unary(ParenthesizedExpression, self);   end

  def relop(op, r)
    f_build_binary_op(RelationshipExpression, op, self, r)
  end

  def select(*args)
    Factory.new(SelectorExpression, self, *args)
  end

  # Same as access, but with varargs and arguments that must be inferred. For testing purposes
  def access_at(*r)
    f_build_binary(AccessExpression, self, r.map { |arg| Factory.infer(arg) })
  end

  # For CaseExpression, setting the default for an already build CaseExpression
  def default(r)
    @init_hash['options'] << Factory.WHEN(Factory.infer(:default), r)
    self
  end

  def lambda=(lambda)
    @init_hash['lambda'] = lambda
    self
  end

  # Assignment =
  def set(r)
    f_build_binary_op(AssignmentExpression, '=', self, r)
  end

  # Assignment +=
  def plus_set(r)
    f_build_binary_op(AssignmentExpression, '+=', self, r)
  end

  # Assignment -=
  def minus_set(r)
    f_build_binary_op(AssignmentExpression, '-=', self, r)
  end

  def attributes(*args)
    @init_hash['attributes'] = args
    self
  end

  def offset
    @init_hash[KEY_OFFSET]
  end

  def length
    @init_hash[KEY_LENGTH]
  end

  # Records the position (start -> end) and computes the resulting length.
  #
  def record_position(locator, start_locatable, end_locatable)
    # record information directly in the Positioned object
    start_offset = start_locatable.offset
    @init_hash[KEY_LOCATOR] = locator
    @init_hash[KEY_OFFSET] = start_offset
    @init_hash[KEY_LENGTH] = end_locatable.nil? ? start_locatable.length : end_locatable.offset + end_locatable.length - start_offset
    self
  end

  # Sets the form of the resource expression (:regular (the default), :virtual, or :exported).
  # Produces true if the expression was a resource expression, false otherwise.
  #
  def self.set_resource_form(expr, form)
    # Note: Validation handles illegal combinations
    return false unless expr.instance_of?(self) && expr.model_class <= AbstractResource
    expr['form'] = form
    return true
  end

  # Returns symbolic information about an expected shape of a resource expression given the LHS of a resource expr.
  #
  # * `name { }` => `:resource`,  create a resource of the given type
  # * `Name { }` => ':defaults`, set defaults for the referenced type
  # * `Name[] { }` => `:override`, overrides instances referenced by LHS
  # * _any other_ => ':error', all other are considered illegal
  #
  def self.resource_shape(expr)
    if expr == 'class'
      :class
    elsif expr.instance_of?(self)
      mc = expr.model_class
      if mc <= QualifiedName
        :resource
      elsif mc <= QualifiedReference
        :defaults
      elsif mc <= AccessExpression
        # if Resource[e], then it is not resource specific
        lhs = expr[KEY_LEFT_EXPR]
        if lhs.model_class <= QualifiedReference && lhs[KEY_VALUE] == 'resource' && expr[KEY_KEYS].size == 1
          :defaults
        else
          :override
        end
      else
        :error
      end
    else
      :error
    end
  end

  # Factory starting points

  def self.literal(o);                   infer(o);                                       end

  def self.minus(o);                     infer(o).minus;                                 end

  def self.unfold(o);                    infer(o).unfold;                                end

  def self.var(o);                       infer(o).var;                                   end

  def self.block(*args);                 new(BlockExpression, args.map { |arg| infer(arg) }); end

  def self.string(*args);                new(ConcatenatedString, args.map { |arg| infer(arg) });           end

  def self.text(o);                      infer(o).text;                                  end

  def self.IF(test_e,then_e,else_e);     new(IfExpression, test_e, then_e, else_e);      end

  def self.UNLESS(test_e,then_e,else_e); new(UnlessExpression, test_e, then_e, else_e);  end

  def self.CASE(test_e,*options);        new(CaseExpression, test_e, options);           end

  def self.WHEN(values_list, block);     new(CaseOption, values_list, block);            end

  def self.MAP(match, value);            new(SelectorEntry, match, value);               end

  def self.KEY_ENTRY(key, val);          new(KeyedEntry, key, val);                      end

  def self.HASH(entries);                new(LiteralHash, entries, false);               end

  def self.HASH_UNFOLDED(entries);       new(LiteralHash, entries, true);                end

  def self.HEREDOC(name, expr);          new(HeredocExpression, name, expr);             end

  def self.STRING(*args);                new(ConcatenatedString, args);                  end

  def self.LIST(entries);                new(LiteralList, entries);                      end

  def self.PARAM(name, expr=nil);        new(Parameter, name, expr);                     end

  def self.NODE(hosts, parent, body);    new(NodeDefinition, hosts, parent, body);       end

  # Parameters

  # Mark parameter as capturing the rest of arguments
  def captures_rest
    @init_hash['captures_rest'] = true
  end

  # Set Expression that should evaluate to the parameter's type
  def type_expr(o)
    @init_hash['type_expr'] = o
  end

  # Creates a QualifiedName representation of o, unless o already represents a QualifiedName in which
  # case it is returned.
  #
  def self.fqn(o)
    o.instance_of?(Factory) && o.model_class <= QualifiedName ? self : new(QualifiedName, o)
  end

  # Creates a QualifiedName representation of o, unless o already represents a QualifiedName in which
  # case it is returned.
  #
  def self.fqr(o)
    o.instance_of?(Factory) && o.model_class <= QualifiedReference ? self : new(QualifiedReference, o)
  end

  def self.SUBLOCATE(token, expr_factory)
    # expr is a Factory wrapped LiteralString, or ConcatenatedString
    # The token is SUBLOCATED token which has a SubLocator as the token's locator
    # Use the SubLocator to recalculate the offsets and lengths.
    model = expr_factory.model
    locator = token.locator
    expr_factory.map_offset(model, locator)
    model._pcore_all_contents([]) { |element| expr_factory.map_offset(element, locator) }

    # Returned the factory wrapping the now offset/length transformed expression(s)
    expr_factory
  end

  def self.TEXT(expr)
    new(TextExpression, infer(expr).interpolate)
  end

  # TODO_EPP
  def self.RENDER_STRING(o)
    new(RenderStringExpression, o)
  end

  def self.RENDER_EXPR(expr)
    new(RenderExpression, expr)
  end

  def self.EPP(parameters, body)
    if parameters.nil?
      params = []
      parameters_specified = false
    else
      params = parameters
      parameters_specified = true
    end
    LAMBDA(params, new(EppExpression, parameters_specified, body), nil)
  end

  def self.RESERVED(name, future=false)
    new(ReservedWord, name, future)
  end

  # TODO: This is the same a fqn factory method, don't know if callers to fqn and QNAME can live with the
  # same result or not yet - refactor into one method when decided.
  #
  def self.QNAME(name)
    new(QualifiedName, name)
  end

  def self.NUMBER(name_or_numeric)
    n_radix = Utils.to_n_with_radix(name_or_numeric)
    if n_radix
      val, radix = n_radix
      if val.is_a?(Float)
        new(LiteralFloat, val)
      else
        new(LiteralInteger, val, radix)
      end
    else
      # Bad number should already have been caught by lexer - this should never happen
      #TRANSLATORS 'NUMBER' refers to a method name and the 'name_or_numeric' was the passed in value and should not be translated
      raise ArgumentError, _("Internal Error, NUMBER token does not contain a valid number, %{name_or_numeric}") %
          { name_or_numeric: name_or_numeric }
    end
  end

  # Convert input string to either a qualified name, a LiteralInteger with radix, or a LiteralFloat
  #
  def self.QNAME_OR_NUMBER(name)
    n_radix = Utils.to_n_with_radix(name)
    if n_radix
      val, radix = n_radix
      if val.is_a?(Float)
        new(LiteralFloat, val)
      else
        new(LiteralInteger, val, radix)
      end
    else
      new(QualifiedName, name)
    end
  end

  def self.QREF(name)
    new(QualifiedReference, name)
  end

  def self.VIRTUAL_QUERY(query_expr)
    new(VirtualQuery, query_expr)
  end

  def self.EXPORTED_QUERY(query_expr)
    new(ExportedQuery, query_expr)
  end

  def self.ARGUMENTS(args, arg)
    if !args.empty? && arg.model_class <= LiteralHash && arg.unfolded
      last = args[args.size() - 1]
      if last.model_class <= LiteralHash && last.unfolded
        last['entries'].concat(arg['entries'])
        return args
      end
    end
    args.push(arg)
  end

  def self.ATTRIBUTE_OP(name, op, expr)
    new(AttributeOperation, name, op, expr)
  end

  def self.ATTRIBUTES_OP(expr)
    new(AttributesOperation, expr)
  end

  # Same as CALL_NAMED but with inference and varargs (for testing purposes)
  def self.call_named(name, rval_required, *argument_list)
    new(CallNamedFunctionExpression, fqn(name), rval_required, argument_list.map { |arg| infer(arg) })
  end

  def self.CALL_NAMED(name, rval_required, argument_list)
    new(CallNamedFunctionExpression, name, rval_required, argument_list)
  end

  def self.CALL_METHOD(functor, argument_list)
    new(CallMethodExpression, functor, true, nil, argument_list)
  end

  def self.COLLECT(type_expr, query_expr, attribute_operations)
    new(CollectExpression, type_expr, query_expr, attribute_operations)
  end

  def self.NAMED_ACCESS(type_name, bodies)
    new(NamedAccessExpression, type_name, bodies)
  end

  def self.RESOURCE(type_name, bodies)
    new(ResourceExpression, type_name, bodies)
  end

  def self.RESOURCE_DEFAULTS(type_name, attribute_operations)
    new(ResourceDefaultsExpression, type_name, attribute_operations)
  end

  def self.RESOURCE_OVERRIDE(resource_ref, attribute_operations)
    new(ResourceOverrideExpression, resource_ref, attribute_operations)
  end

  def self.RESOURCE_BODY(resource_title, attribute_operations)
    new(ResourceBody, resource_title, attribute_operations)
  end

  def self.PROGRAM(body, definitions, locator)
    new(Program, body, definitions, locator)
  end

  # Builds a BlockExpression if args size > 1, else the single expression/value in args
  def self.block_or_expression(args, left_brace = nil, right_brace = nil)
    if args.size > 1
      block_expr = new(BlockExpression, args)

      # If given a left and right brace position, use those
      # otherwise use the first and last element of the block
      if !left_brace.nil? && !right_brace.nil?
        block_expr.record_position(args.first[KEY_LOCATOR], left_brace, right_brace)
      else
        block_expr.record_position(args.first[KEY_LOCATOR], args.first, args.last)
      end

      block_expr
    else
      args[0]
    end
  end

  def self.HOSTCLASS(name, parameters, parent, body)
    new(HostClassDefinition, name, parameters, parent, body)
  end

  def self.DEFINITION(name, parameters, body)
    new(ResourceTypeDefinition, name, parameters, body)
  end

  def self.PLAN(name, parameters, body)
    new(PlanDefinition, name, parameters, body, nil)
  end

  def self.APPLY(arguments, body)
    new(ApplyExpression, arguments, body)
  end

  def self.APPLY_BLOCK(statements)
    new(ApplyBlockExpression, statements)
  end

  def self.FUNCTION(name, parameters, body, return_type)
    new(FunctionDefinition, name, parameters, body, return_type)
  end

  def self.LAMBDA(parameters, body, return_type)
    new(LambdaExpression, parameters, body, return_type)
  end

  def self.TYPE_ASSIGNMENT(lhs, rhs)
    if lhs.model_class <= AccessExpression
      new(TypeMapping, lhs, rhs)
    else
      new(TypeAlias, lhs['cased_value'], rhs)
    end
  end

  def self.TYPE_DEFINITION(name, parent, body)
    new(TypeDefinition, name, parent, body)
  end

  def self.nop? o
    o.nil? || o.instance_of?(Factory) && o.model_class <= Nop
  end

  STATEMENT_CALLS = {
    'require' => true,
    'realize' => true,
    'include' => true,
    'contain' => true,
    'tag'     => true,

    'debug'   => true,
    'info'    => true,
    'notice'  => true,
    'warning' => true,
    'err'     => true,

    'fail'    => true,
    'import'  => true,  # discontinued, but transform it to make it call error reporting function
    'break'   => true,
    'next'    => true,
    'return'  => true
  }.freeze

  # Returns true if the given name is a "statement keyword" (require, include, contain,
  # error, notice, info, debug
  #
  def self.name_is_statement?(name)
    STATEMENT_CALLS.include?(name)
  end

  class ArgsToNonCallError < RuntimeError
    attr_reader :args, :name_expr
    def initialize(args, name_expr)
      @args = args
      @name_expr = name_expr
    end
  end

  # Transforms an array of expressions containing literal name expressions to calls if followed by an
  # expression, or expression list.
  #
  def self.transform_calls(expressions)
    expressions.reduce([]) do |memo, expr|
      name = memo[-1]
      if name.instance_of?(Factory) && name.model_class <= QualifiedName && name_is_statement?(name[KEY_VALUE])
        if expr.is_a?(Array)
          expr = expr.reject { |e| e.is_a?(Parser::LexerSupport::TokenValue) }
        else
          expr = [expr]
        end
        the_call = self.CALL_NAMED(name, false, expr)
        # last positioned is last arg if there are several
        the_call.record_position(name[KEY_LOCATOR], name, expr[-1])
        memo[-1] = the_call
        if expr.is_a?(CallNamedFunctionExpression)
          # Patch statement function call to expression style
          # This is needed because it is first parsed as a "statement" and the requirement changes as it becomes
          # an argument to the name to call transform above.
          expr.rval_required = true
        end
      elsif expr.is_a?(Array)
        raise ArgsToNonCallError.new(expr, name)
      else
        memo << expr
        if expr.model_class <= CallNamedFunctionExpression
          # Patch rvalue expression function call to statement style.
          # This is not really required but done to be AST model compliant
          expr['rval_required'] = false
        end
      end
      memo
    end
  end

  # Transforms a left expression followed by an untitled resource (in the form of attribute_operations)
  # @param left [Factory, Expression] the lhs followed what may be a hash
  def self.transform_resource_wo_title(left, attribute_ops, lbrace_token, rbrace_token)
    # Returning nil means accepting the given as a potential resource expression
    return nil unless attribute_ops.is_a? Array
    return nil unless left.model_class <= QualifiedName
    keyed_entries = attribute_ops.map do |ao|
      return nil if ao[KEY_OPERATOR] == '+>'
      KEY_ENTRY(infer(ao['attribute_name']), ao['value_expr'])
    end
    a_hash = HASH(keyed_entries)
    a_hash.record_position(left[KEY_LOCATOR], lbrace_token, rbrace_token)
    result = block_or_expression(transform_calls([left, a_hash]))
    result
  end

  def interpolate_Factory(c)
    self
  end

  def interpolate_LiteralInteger(c)
    # convert number to a variable
    self.var
  end

  def interpolate_Object(c)
    self
  end

  def interpolate_QualifiedName(c)
    self.var
  end

  # rewrite left expression to variable if it is name, number, and recurse if it is an access expression
  # this is for interpolation support in new lexer (${NAME}, ${NAME[}}, ${NUMBER}, ${NUMBER[]} - all
  # other expressions requires variables to be preceded with $
  #
  def interpolate_AccessExpression(c)
    lhs = @init_hash[KEY_LEFT_EXPR]
    if is_interop_rewriteable?(lhs)
      @init_hash[KEY_LEFT_EXPR] = lhs.interpolate
    end
    self
  end

  def interpolate_NamedAccessExpression(c)
    lhs = @init_hash[KEY_LEFT_EXPR]
    if is_interop_rewriteable?(lhs)
      @init_hash[KEY_LEFT_EXPR] = lhs.interpolate
    end
    self
  end

  # Rewrite method calls on the form ${x.each ...} to ${$x.each}
  def interpolate_CallMethodExpression(c)
    functor_expr = @init_hash['functor_expr']
    if is_interop_rewriteable?(functor_expr)
      @init_hash['functor_expr'] = functor_expr.interpolate
    end
    self
  end

  def is_interop_rewriteable?(o)
    mc = o.model_class
    if mc <= AccessExpression || mc <= QualifiedName || mc <= NamedAccessExpression || mc <= CallMethodExpression
      true
    elsif mc <= LiteralInteger
      # Only decimal integers can represent variables, else it is a number
      o['radix'] == 10
    else
      false
    end
  end

  def self.concat(*args)
    result = ''.dup
    args.each do |e|
      if e.instance_of?(Factory) && e.model_class <= LiteralString
        result << e[KEY_VALUE]
      elsif e.is_a?(String)
        result << e
      else
        raise ArgumentError, _("can only concatenate strings, got %{class_name}") % { class_name: e.class }
      end
    end
    infer(result)
  end

  def to_s
    "Factory for #{@model_class}"
  end

  def factory_to_model(value)
    if value.instance_of?(Factory)
      value.contained_current(self)
    elsif value.instance_of?(Array)
      value.each_with_index { |el, idx| value[idx] = el.contained_current(self) if el.instance_of?(Factory) }
    else
      value
    end
  end

  def contained_current(container)
    if @current.nil?
      unless @init_hash.include?(KEY_LOCATOR)
        @init_hash[KEY_LOCATOR] = container[KEY_LOCATOR]
        @init_hash[KEY_OFFSET] = container[KEY_OFFSET] || 0
        @init_hash[KEY_LENGTH] = 0
      end
      @current = create_model
    end
    @current
  end
end
end
end
Page not found – Hello World !